Physics of Language Models Part 3 - Knowledge

Author: Zeyuan Allen-Zhu

Presenter: Ye (Steven) Yuan

Author Introduction

- Meta / FAIR Labs (2022 present)
 - Al research scientist, in Seattle/Bellevue office
- Mirosoft Research Redmond (2017 2022)
 - senior -> principal researcher
- PRINCETON and IAS (2015 2017)
 - postdoc (hosted by Elad Hazan and Avi Wigderson)
- MIT, Csail (2010 2015)
 - Sc.D. in computer science (advised by Jon Kelner and Silvio Micali)
 - M.S. in computer science (advised by Silvio Micali)
- Tsinghua, Department of Physics (2006 2010)
 - B.S. in mathematics and physics (summa cum laude)
 - Chi-Sun Yeh prize for physics major
- NFLS (2000 2006)
 - high school diplomat with English major

Zeyuan on the photo day of MSR AI @ Microsoft Research, 2018

Author Introduction

• Yuanzhi Li

- Carnegie Mellon University (2019 Present)
 - Assistant Professor
- Stanford (2018 2019)
 - postdoc
- Princeton (2014 2018)
 - Ph.D. in computer science
 - M.S. in computer science
- Tsinghua, Department of Physics (2010 2014)
 - B.S. in Computer Science

Theory of Language Models

• To design numerous, controlled experiments AND probe into the network, to statistically uncover the mechanisms behind how diverse AI tasks are being accomplished via pretraining/fine-tuning.

"physics"

controlled experiments (pretrain + finetune data) repeatable experiments (try diff configs) (GPT2 < 1B params)

individual AI tasks probing

To design *numerous, controlled* experiments AND *probe into* the network, to statistically uncover the *mechanisms* behind how *diverse* AI tasks are being accomplished via pretraining / finetuning

Knowledge Storage and Extraction

Section 1

Interesting Observations

Interesting Observations

Knowledge Design (Datasets Construction)

bioS dataset Biography Synthetic Dataset

- 0. First, middle, and last names from 400, 400, and 1000 choices
- 1. Birth years range from 1900 to 2099, months 1-12, days 1-28.
- 2. Birth cities from 200 US cities
- 3. Universities from a list of 300 US institutions.
- 4. Majors are from 100 college disciplines
- 5. Employers are chosen from 263 companies
- 6. Work location uniquely determined by employer

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

bioR dataset Biography Real Dataset

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing Manager at Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on 2nd October 1996 in Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a part of Facebook's team. She is an avide and loves traveling.

rewritten by LLaMA 1 / LIMA

Knowledge Extraction (Task Definition)

bioS data

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at MIT. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

Sabrina Eugeo Zuberg came into this world on ...

[...100k biography entries]

$\mathsf{QA}_{\mathsf{train}}$

What is the birth date of Anya Briar Forger? Answer: October 2, 1996. Which university did Anya Briar Forger study? Answer: MIT. Which company did Anya Briar Forger work for? Answer: Meta Platforms. What is the birth city of Anya Briar Forger? Answer: Princeton, NJ... What major did Anya Briar Forger study? Answer: Communications. Where did Anya Briar Forger work? Answer: Menlo Park, CA.

[...QAs on 50k individuals]

separate train/test sets

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? Which university did Sabrina Eugeo Zuberg study? Which company did Sabrina Eugeo Zuberg work for? What is the birth city of Sabrina Eugeo Zuberg? What major did Sabrina Eugeo Zuberg study? Where did Sabrina Eugeo Zuberg work?

Mix Training

bioS single	- 24.5 53.6 70.5 77.5 87.1 85.7 81.8							bioR single - 14.7	22.4	28.3	35.1	71.4	78.7	78.4
-	0.1 QAr	o.2 - ratio	0.3 0 of Q/	0.4 A data	^{0.6} in m	0.1 QA1	0.2 - rati	0.3 o of Q	^{0.4} A data	^{0.6} in m	0.8 ix trai	0.9 ning		
		(a) k	oioS					(b)	bioR					

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? Which university did Sabrina Eugeo Zuberg study? Which company did Sabrina Eugeo Zuberg work for? What is the birth city of Sabrina Eugeo Zuberg? What major did Sabrina Eugeo Zuberg study? Where did Sabrina Eugeo Zuberg work?

Using GPT2 ~100M/300M params (with rotary emb)

Using QAr=0.8

Mix Training

Mix Training

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? Which university did Sabrina Eugeo Zuberg study? Which company did Sabrina Eugeo Zuberg work for?

- 1. The model uses the in-dist QA data to encode knowledge.
- 2. The model then memorizes the in-dist BIO data.
- 3. Align the knowledge with BIO data and learn out-dist BIO data.
- 4. Increase QA out-dist accuracy.

Takeaway1:

Doesn't reflect the natural progression of human knowledge. This is not only for QAr=0.8 but also obverse in LLaMA 1.

Fine-Tuning

- Pretrain on bioS data
- Fine-tune on QA train
- Test on QA test

bioS data

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at MIT. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

Sabrina Eugeo Zuberg came into this world on ...

[...100k biography entries]

QA_{train}

QA_{test}

What is the birth date of Anya Briar Forger? Answer: October 2, 1996. Which university did Anya Briar Forger study? Answer: MIT. Which company did Anya Briar Forger work for? Answer: Meta Platforms. What is the birth city of Anya Briar Forger? Answer: Princeton, NJ... What major did Anya Briar Forger study? Answer: Communications. Where did Anya Briar Forger work? Answer: Menlo Park, CA.

[...QAs on 50k individuals]

separate train/test sets

What is the birth date of Sabrina Eugeo Zuberg?

Which university did Sabrina Eugeo Zuberg study? Which company did Sabrina Eugeo Zuberg work for? [...QAs on remaining 50k]

What is the birth city of Sabrina Eugeo Zuberg? What major did Sabrina Eugeo Zuberg study? Where did Sabrina Eugeo Zuberg work?

means the storage of knowledge and the extraction of knowledge are independent to each other.

Data Augmentation

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at MIT. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

Sabrina Eugeo Zuberg came into this world on September 7, 1991...

[...100k biography entries]

Multiplicity: create *M* distinct biographical entries per individual

Anya Briar Forger came into this world on October 2, 1996. She originated from Princeton, NJ. She pursued advanced coursework at MIT. She dedicated her studies to Communications. She developed her career at Meta Platforms. She gained work experience in Menlo Park, CA.

Permutation: random permutations to the biography sentences (for *P* times)

Anya Briar Forger originated from Princeton, NJ. She dedicated her studies to Communications. She gained work
experience in Menlo Park, CA. She developed her career at Meta Platforms. She came into this world on October 2,
1996. She pursued advanced coursework at MIT.

Fullname:

replace pronouns and partial names with fullname

 Anya Briar Forger originated from Princeton, NJ. Anya Briar Forger dedicated her studies to Communications. Anya Briar Forger gained work experience in Menlo Park, CA. Anya Briar Forger developed her career at Meta Platforms. Anya Briar Forger came into this world on October 2, 1996. Anya Briar Forger pursued advanced coursework at MIT.

bioS data

Data Augmentation

Takeaway3:

The more augmentation we did for pre-training dataset, the better results we will have after fine-tuning.

Position-based Probing

Takeaway4:

If we don't do the augmentation, the knowledge can only be extracted from the token just before the knowledge. However, if we do the data augmentation, then all knowledge is extractable from the earliest token.

feed a biographical entry as input to GPT2^{*}

baseline	8.3	8.3	8.3	8.3	8.3	8.3	2.5	2.5	2.5	2.5	2.5	2.5	37.0	37.0	37.0	37.0	37.0	37.0	4.0	4.0	4.0	4.0	4.0	4.0	1.5	1.5	1.5	1.5	1.5	1.5	14.8	14.8	14.8	14.8	14.8	14.8
bioS single	100						5.9	100					38.0	37.1	99.2				4.7	4.6	5.4	99.9			1.5	1.2	1.3	2.4	99.5		15.4	15.4	14.9	13.0	69.1	100
bioS single + fullname	100						52.1	100					67.3	74.2	99.9				51.9	56.3	58.4	99.8			47.2	53.1	52.5	55.5	99.3		28.2	31.3	30.9	32.9	75.8	99.9
bioS single + permute1	26.1	28.9	32.8	40.5	56.8	100	19.2	22.9	28.5	36.8	53.3	100	47.5	50.1	53.0	57.6	69.2	98.8	20.2	24.2	28.8	37.6	55.5	100	21.4	33.0	45.5	57.9	72.6	98.3	27.1	45.3	62.2	78.1	92.2	100
bioS single + permute2	87.7	88.8	90.1	91.6	94.0	100	52.1	55.5	60.0	64.7	73.7	100	65.6	67.8	70.6	74.6	80.7	99.9	61.1	64.4	68.5	72.4	80.6	100	61.6	70.1	77.3	84.7	91.9	99.9	66.9	76.1	83.7	91.1	97.1	100
bioS single + permute5	96.1	96.3	96.7	97.1	97.9	100	58.0	60.8	63.7	67.8	76.8	100	71.5	73.1	74.8	77.9	84.1	99.9	72.5	74.5	76.3	79.2	84.7	100	97.0	97.1	97.3	97.9	98.6	100	99.3	99.5	99.6	99.8	99.9	100
bioS single + permute1 + fullname -	58.8	64.3	69.6	74.4	82.9	100	37.4	41.6	47.9	56.1	69.7	99.9	54.9	59.1	64.0	70.1	79.0	98.9	42.0	47.2	52.7	60.1	71.8	100	43.2	54.2	65.3	76.8	88.3	99.8	49.5	61.8	74.6	85.1	95.6	100
bioS single + permute2 + fullname -	81.5	85.0	86.7	88.2	92.1	100	57.7	63.2	65.9	71.1	78.2	100	69.7	72.4	75.5	78.0	83.6	99.7	65.3	69.6	72.8	76.6	82.2	100	91.9	93.9	94.8	96.0	97.4	100	96.3	97.4	98.2	98.8	99.6	100
bioS single + permute5 + fullname -	88.8	90.4	91.5	92.3	94.6	100	63.5	67.3	69.9	73.6	80.4	100	76.8	80.0	81.8	83.8	88.1	99.9	70.4	72.9	75.1	78.2	83.9	100	98.0	98.0	98.3	98.7	99.0	100	99.9	100	100	100	100	100
bioS multi2	100						70.7	100					47.8	74.8	99.9				18.9	30.1	60.1	99.6			3.0	3.8	8.4	34.6	99.3		15.0	14.6	13.9	21.8	66.9	100
bioS multi2 + fullname-	100						100	100					99.6	100	100				99.7	99.9	100	100			99.6	99.9	99.9	99.9	100		66.2	71.4	72.7	74.5	76.5	99.9
bioS multi2 + permute	100	100	100	100	100	100	99.9	100	100	100	100	100	99.9	100	100	100	100	100	99.5	99.7	99.8	99.9	100	100	93.3	95.3	96.8	98.0	98.8	99.9	90.2	92.8	95.0	96.8	98.6	100
bioS multi2 + permute + fullname ·	99.9	100	100	100	100	100	100	100	100	100	100	100	100	99.9	100	100	100	100	99.9	100	100	100	100	100	99.7	99.8	99.9	99.9	100	100	99.0	99.3	99.3	99.5	99.8	100
bioS multi5	100						44.6	100					44.0	77.2	99.8				42.0	60.1	76.1	99.5			5.5	7.1	10.7	37.5	98.5		14.0	13.8	14.8	21.6	56.2	100
bioS multi5 + fullname	100						100	100					98.7	99.8	100				99.3	99.9	99.9	99.9			98.1	99.6	99.7	99.7	100		58.8	65.1	67.2	68.6	72.0	99.9
bioS multi5 + permute	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.9	99.9	99.9	100	100	100	99.8	99.8	99.9	100	100	100
bioS multi5 + permute + fullname	100	100	100	100	100	100	100	99.9	99.9	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.9	100	99.9	100	100	100	99.7	99.8	99.8	99.9	99.9	100
	0.6	1.br	Nonth	Nonth	A.bn.	S.bn	O.bc.	1.bc	12 - bc	3.6C/	* ^{\$.6} C/	5.6C	0.UN	I'UN,	iv Zuni	3.Un,	×-Un,	Sun,	i, may	1. ma	2. Ma	3.m.	A'Ma	S.m.	O.C.	1. Che	ane ch	ane sch	arne ch	S.C.N.	ne o.cc		1. 2. CC	3.CC	A CCIL	S. CCIL

Illustration of the P-probing

Underscore prepositions are the special token positions where we prob. The task is to predict all attributes following these positions. Given the attribute ordering, there can be up to $6 \times 6 = 36$ tasks across all data.

linear classifier to predict 6 possible knowledges

Query-based Probing

baseline	- 2.7	0.0 0.5 0.3 1.0 0.4 13.7	8.3 2.5 37.0 4.0 1.5 14.8	0.5 0.3 1.0 0.4 13.7
bioS single	- 9.7	33.5 6.3 2.3 4.0 1.1 13.8	<mark>63.4</mark> 1.9 37.5 3.1 0.2 13.1	1.1 0.3 1.4 0.1 11.6
bioS single + fullname	-48.9	56.2 58.8 63.0 55.7 50.5 14.1	78.8 47.5 65.4 51.0 47.4 28.9	43.9 31.2 40.8 44.4 28.9
bioS single + permute1	- 4.4	0.5 3.3 2.4 5.0 3.5 13.7	10.2 1.2 37.5 2.9 0.7 12.8	0.5 0.4 1.5 0.6 12.0
bioS single + permute2	-53.2	57.3 48.3 53.1 55.0 51.8 58.3	85.4 42.1 60.1 55.7 53.8 59.1	39.6 30.9 48.8 53.5 58.5 tr
bioS single + permute5	-70.0	56.4 57.7 58.3 64.9 90.5 97.7	95.3 49.7 66.6 68.6 96.5 99.1	47.7 40.7 63.0 <mark>96.2 98.9</mark>
bioS single + permute1 + fullname	-31.7	26.6 29.3 36.9 31.1 31.4 37.9	50.1 20.9 42.6 27.1 27.3 34.7	19.3 13.5 21.2 26.8 33.4 W
bioS single + permute2 + fullname	-73.1	69.0 60.6 64.2 64.0 <mark>87.9 95.0</mark>	77.8 51.0 63.3 61.4 92.1 96.7	48.1 35.0 51.5 91.9 96.6
bioS single + permute5 + fullname	-80.2	83.7 67.8 72.6 69.1 <mark>93.0 98.6</mark>	86.5 59.0 73.5 64.2 98.0 99.9	56.8 40.8 56.6 <mark>97.9 99.9</mark>
bioS multi2	-41.1	100 71.7 33.1 26.1 5.2 14.0	100 70.3 45.1 19.6 0.7 13.0	66.8 14.9 14.8 0.7 11.8 fa
bioS multi2 + fullname	-84.0	100 97.7 89.5 97.6 91.3 35.3	100 100 99.7 99.7 99.8 <mark>69.2</mark>	94.5 62.2 84.2 95.2 72.5
bioS multi2 + permute	-91.2	<mark>99.3 98.7</mark> 89.8 96.7 83.3 83.5	<mark>99.9 99.9 99.6 99.4 93.9 90.2</mark>	98.2 78.6 95.5 93.1 89.4 e)
bioS multi2 + permute + fullname	- <mark>96.1</mark>	100 98.8 91.3 98.1 93.7 97.8	<mark>99.7 100 100 99.9 99.9 99.4</mark>	95.4 64.6 88.1 99.4 99.1
bioS multi5	-41.0	100 50.8 30.9 43.5 10.2 13.8	100 39.8 40.3 40.1 3.2 13.2	38.1 9.7 36.1 2.3 11.9
bioS multi5 + fullname	-82.4	100 98.6 88.4 96.1 91.9 26.8	100 100 98.3 99.4 98.5 <mark>63.1</mark>	<mark>95.2</mark> 58.7 87.1 94.1 66.9
bioS multi5 + permute	- <mark>96.6</mark>	100 99.0 91.3 97.7 95.1 98.7	100 100 99.9 100 99.9 99.8	96.1 72.6 94.9 99.6 99.7
bioS multi5 + permute + fullname	- <mark>96.2</mark>	100 98.7 90.6 97.9 93.7 99.0	100 100 99.8 100 100 99.8	95.4 68.1 92.0 99.9 99.8
QA mea	QAD.	date city univ major name city QAD QA QA QAC QAC OAC	st b month city univ major name city offirst Q first Offirst Q first Q	ole b city univ major name city Q whole ole major name c city Q whole c whole c whole c city

Takeaway5:

If we do the data augmentation, all knowledge is extractable from the person's name. In other words, "attribute directly saved to the person's name" is a crucial factor for effective knowledge extraction.

Do we have to augment anyone?

pretrain

Similar to real cases, celebrity people will have many different descriptions of their biography on the Internet. The minority people only have a few or only one description.

Takeaway6:

Celebrities help minorities. If we simply do a permutation, that is not enough. However, if we include the celebrity data in the pre-training phase, it will boost the accuracy from 4.4% to 86.8%. Namely, we don't have to augment all data. Only parts of them will be extremely helpful.

What about BERT? Bidirectional Model

[...QAs on 50k individuals]

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? [mask] [mask] [mask] [mask] Which university did Sabrina Eugeo Zuberg study? [mask] [mask] Which company did Sabrina Eugeo Zuberg work for? [mask] [mask]

haseline - 2.7	7 0.0	0.5 0	.3 1.0	0.4 13.7	2.7	0.0	0.5	0.3 1.	0 0.4	13.7		8.3	2.5	37.0 4.0) 1.5	14.8		0.5	0.3	1.0	0.4	13.7
bioS single - 30.	1 87.0	26.3 10	.7 51.2	3.1 13.4	3.7	0.3	3.3	1.9 4.	1 1.9	14.5	1	14.2	1.2	37.5 2.6	5 0.5	12.9		0.5	0.2	1.0	0.2	11.8
bioS single + fullname - 39.	3 95.9	28.4 29	0.2 73.7	4.5 12.0	12.2	9.9	7.5	13.0 26	.4 3.3	17.0		44.2	13.4	37.0 18.	7 0.8	13.2		14.4	6.3	17.6	0.6	12.2
bioS single + permute1 + fullname - 40 .	.0 88.1	36.6 27	.8 69.7	11.2 13.7	7.4	2.5	5.4	7.3 14	.3 3.8	17.0		28.8	6.6	37.5 12.	0 0.6	13.3		6.7	2.5	9.4	0.4	12.3
bioS single + permute2 + fullname - 43 .	.6 95.2	42.1 26	5.5 78.0	9.4 16.6	22.4	33.2	24.4	17.4 47	.1 5.2	15.9		71.5	33.0	38.9 35.	3 1.1	13.2		33.9	13.6	36.0	0.9	11.9
bioS single + permute5 + fullname - 35.	.0 95.0	37.4 8	.3 61.4	4.4 14.1	24.5	47.8	24.1	17.1 46	.2 5.8	15.6		78.8	31.7	38.3 33.	8 0.9	13.5		31.8	12.7	35.1	1.0	12.3
bioS single + permute1 - 15.	.7 34.9	15.0 6	.2 35.0	2.3 14.4	3.1	0.0	3.0	1.9 3.	5 1.6	13.4		8.9	1.0	37.5 3.2	2 0.5	13.5		0.6	0.4	1.3	0.3	12.2
bioS single + permute2 - 22.	.0 63.2	7.9 9	.5 46.5	4.2 16.6	3.1	0.0	2.1	1.6 3.	5 1.9	13.1		12.1	1.1	37.5 2.7	7 0.8	13.1		0.6	0.1	1.1	0.7	12.1
bioS single + permute5 - 29.	.7 84.9	17.4 14	.8 53.2	3.8 12.4	3.5	0.0	2.4	1.9 4.	1 2.5	13.9		8.8	0.9	37.5 2.3	3 0.7	13.1		0.3	0.2	0.8	0.1	12.0
bioS multi2 - 34.	.3 97.0	22.5 14	.4 63.7	3.6 13.7	6.9	5.6	8.1	5.7 17	.5 2.7	15.1		53.8	12.0	37.5 16.	1 0.5	12.9		12.2	3.8	17.6	0.4	12.1
bioS multi2 + fullname - 39.	.4 93.7	36.3 26	69.1	5.2 15.6	33.9	75.5	31.9	21.2 69	.4 4.9	11.6		93.8	41.5	40.5 57.	7 0.5	13.0		42.4	19.2	61.6	0.6	12.0
bioS multi2 + permute + fullname - 41.	.8 95.3	38.5 25	5.5 75.9	9.3 12.9	39.7	87.0	38.0	24.4 73	.6 7.4	16.8		98.6	47.0	42.9 69.	9 2.2	13.0		48.3	23.6	71.3	2.0	12.3
bioS multi2 + permute - 32.	.2 92.6	16.9 12	.8 60.4	5.1 14.8	4.1	0.3	2.7	1.9 6.	4 2.7	16.2		11.1	1.2	37.5 3.4	1 0.6	13.2		0.9	0.2	2.5	0.3	12.4
bioS multi5 - 38.	.4 98.7	35.1 22	.3 63.5	4.0 15.1	7.4	3.7	5.7	5.1 15	.9 3.0	14.5		45.7	9.8	37.5 12.	4 0.5	13.4		10.4	2.1	11.7	0.3	11.9
bioS multi5 + fullname - 37.	.8 93.1	26.3 25	5.2 71.6	5.1 15.1	35.8	85.4	31.6	20.9 66	.6 4.4	16.8		94.9	42.1	42.6 65.	7 1.3	12.7		42.7	20.9	68.1	0.9	11.8
bioS multi5 + permute + fullname - 41.	.3 92.5	30.8 31	9 78.0	11.7 15.8	34.8	87.0	24.4	19.9 65	.3 5.5	16.2		96.4	40.3	42.6 60.	2 1.2	13.4		40.5	21.3	62.2	0.9	12.2
bioS multi5 + permute - 31.	.5 89.0	19.8 1	.6 57.6	4.1 15.9	3.9	0.3	3.0	2.2 6.	7 2.5	14.2		23.2	1.5	37.5 4.8	3 0.5	12.6		1.0	0.4	3.5	0.4	11.7
	20.		1 1	- P. 113	- C	20.		ا ا	- 9.			5		کم ادر	- 6.				ist.	1		
anacc	h date b	city uni	majo	name c city	an acc	n date p	CILY	nuis wajo.	name	CICS		nontri b	in at i	Jula Wajo,	name	City		DCILLE	Univ n	ajo, na	me c	city
ux mee	WIX WIX	W. W	it with c	WIT	24 mea	QA QA	Qr	QP'OP	C/ QA		ust b.	first	2.6113-	first first	FILST		hole	~ who's	hole .	ole C.	nole	
W	,		V.1		Qr.			~			Q-fills	u	- u	O.///	u		Q.M.	a. a.	N. O.W.	~ Q.Ϋ		

What about BERT? Bidirectional Model

- The only useful augmentation is to change pronouns to full names.
- This makes sense because, during the masked modelling, each word has the same chance to be masked. They will learn to associate with the most related unmasked words, preferably those that are adjacent. So, if we have full names everywhere, then the model will store knowledge in a better way for better extraction.
- For example, birthdate has higher accuracy. This is because the month, day, and year are independent of each other. We cannot infer the birthday from the birth month or birth year, so the model must store this knowledge in the person's name, not the word adjacent to it.
- In contrast, the company name has very low accuracy. This is because the company names always have multiple words, and they will associate with each other. Moreover, majors will mainly have a single word, so they will be stored in the person's name.

Takeaway7:

The bidirectional model cannot do this as well. Whether the knowledge is stored on the person's name (pre-train) == QA test accuracy (fine-tune).

Knowledge Manipulation

Section 2

Partial and Dual Retrieval

bioS data

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at MIT. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

knowledge extraction

What is the birth date of Anya Briar Forger? Which university did Anya Briar Forger study? Which company did Anya Briar Forger work for? What is the birth city of Anya Briar Forger? What major did Anya Briar Forger study? Where did Anya Briar Forger work?

partial retrieval

What is the birth day in the month for Anya Briar Forger? What is the birth year for Anya Briar Forger?

Answer: 2

Answer: 1996

dual retrieval

- 1. Where was Anya Briar Forger born and which company did this this person work for? Princeton, NJ; Meta Platforms.
- 2. Which company did Anya Briar Forger work for and where was this person born? <u>Meta Platforms; Princeton, NJ.</u>
- 3. Which university and what major did Anya Briar Forger study? <u>Massachusetts Institute of Technology; Communications.</u>
- 4. What major and which university did Anya Briar Forger study? Communications; Massachusetts Institute of Technology.
- 5. Where and which company did Anya Briar Forger work for? Menlo Park, CA; Meta Platforms.
- 6. Which company and where did Anya Briar Forger work for? Meta Platforms; Menlo Park, CA.

Partial and Dual Retrieval

baseline -	3.6	0.5		0.0	0.0	0.0	0.0	0.4	0.4		0.0	0.5	0.3	1.0	0.4	13.7
bioS single -	37.2	15.6		0.2	0.3	0.2	0.2	1.0	1.1		33.5	6.3	2.3	4.0	1.1	13.8
bioS single + fullname ·	58.5	43.5		27.6	29.1	41.1	36.3	55.2	11.2		56.2	58.8	63.0	55.7	50.5	14.1
bioS single + permute1	8.5	2.6		0.2	0.2	0.3	0.3	3.6	1.9		0.5	3.3	2.4	5.0	3.5	13.7
bioS single + permute2	62.1	16.6		27.1	27.1	32.1	31.9	52.5	51.2		57.3	48.3	53.1	55.0	51.8	58.3
bioS single + permute5	67.6	18.8		49.1	49.1	42.0	42.7	94.9	91.8		56.4	57.7	58.3	64.9	90.5	97.7
bioS single + permute1 + fullname ·	43.9	30.5		9.5	10.4	12.3	11.0	32.0	28.5		26.6	29.3	36.9	31.1	31.4	37.9
bioS single + permute2 + fullname ·	70.1	65.0		54.3	53.9	43.0	44.2	91.1	90.2		69.0	60.6	64.2	64.0	87.9	95.0
bioS single + permute5 + fullname	82.4	68.7		65.5	63.9	49.7	54.6	95.9	96.6		83.7	67.8	72.6	69.1	93.0	98.6
bioS multi2	90.6	47.1		5.2	3.1	19.8	9.6	3.4	2.6		100	71.7	33.1	26.1	5.2	14.0
bioS multi2 + fullname -	97.6	77.1		94.0	97.5	93.8	94.3	98.5	19.4		100	97.7	89.5	97.6	91.3	35.3
bioS multi2 + permute	95.7	46.5		85.2	88.2	93.8	95.1	87.9	80.4		99.3	98.7	89.8	96.7	83.3	83.5
bioS multi2 + permute + fullname	96.2	67.2		95.1	97.0	95.3	94.3	97.4	96.1		100	98.8	91.3	98.1	93.7	97.8
bioS multi5	85.0	37.3		6.9	4.6	31.5	16.7	9.7	3.6		100	50.8	30.9	43.5	10.2	13.8
bioS multi5 + fullname	97.4	68.0		94.0	95.4	92.0	94.6	94.9	17.4		100	98.6	88.4	96.1	91.9	26.8
bioS multi5 + permute	82.3	20.4		96.5	97.6	94.8	94.6	97.0	96.9	-	100	99.0	91.3	97.7 [•]	95.1	98.7
bioS multi5 + permute + fullname	97.6	76.7		95.6	98.6	95.1	95.1	98.7	97.7		100	98.7	90.6	97.9	93.7	99.0
		<u>ا</u>	1	- 6			ist		, e		20.		lei	1	- Pi	
	oda, r	Nea	0	ame th	ocity n	Jajo, 14	Univ	cons on	anne		date	DCILY	Univ n	13j0, U	amence	CIUS
Qr	QA .		ity th	amen	UNIN'T.	major	amen	ity tc.		QA.	Qr	Qr	QR.	QA C.	Qr	
		, p	· (An "'	An V	`` _ \ C	N - N C									

If we ask the model to predict the company name first and then the company city, it can do very well. Inversely, if we ask the model to predict the company city first and then the company name, then it will do very badly. (As we didn't do permutation in this case, and the company city is determined by the company name.)

If we only extract birthdays, the model can do it very well. If we only extract birth years, the model struggles with it. This means the birthdays and birth months are hint words for getting birth years correctly.

Takeaway8:

Evidence of the necessity of the chain of thoughts.

Knowledge Classification and Comparison

knowledge classification

Was Anya Briar Forger born in an even month? <u>Answer: Yes</u>. What is Anya Briar Forger's birth month mod 6? <u>Answer: 4</u>. What is Anya Briar Forger's birth month in numerals? <u>Answer: 10</u>.

knowledge comparison

Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? <u>Answer: [Yes/No]</u>. What is Anya Briar Froger's birth month minus Sabrina Eugeo Zuberg's birth month? <u>Answer: [-11..11]</u>.

Knowledge Classification and Comparison

					pretrain	ed model		QA finetu	ned model		
			baseline	trained w/o hint		trained with hin	t	trained w/o hint		trained with hin	t
field	task	#train individuals		test acc	test acc (with hint)	test acc (w/o hint)	hint acc	test acc	test acc (with hint)	test acc (w/o hint)	hint acc
birthmonth	classify %2	(2.5k)	50.0	60.4	77.8	65.2	64.5	61.9	80.4	65.2	69.1
birthmonth	classify %2	(5k)	50.0	67.3	87.3	72.7	80.3	68.0	89.5	72.8	83.9
birthmonth	classify %2	(10k)	50.0	75.9	94.2	80.3	91.0	76.4	95.0	79.9	92.8
birthmonth	classify %2	(25k)	50.0	86.4	98.6	91.1	97.8	87.1	98.8	90.9	98.4
birthmonth	classify %2	(50k)	50.0	95.3	99.5	97.5	99.2	96.3	99.7	97.5	99.5
birthmonth	classify %12	(2.5k)	8.3	51.5	61.5	53.7	61.5	58.3	64.1	53.8	64.0
birthmonth	classify %12	(5k)	8.3	74.2	79.0	70.1	79.0	80.3	82.5	75.0	82.4
birthmonth	classify %12	(10k)	8.3	91.6	92.0	86.8	92.0	93.5	94.7	91.2	94.7
birthmonth	classify %12	(25k)	8.3	97.9	98.5	96.8	98.5	98.9	99.2	98.3	99.2
birthmonth	classify %12	(50k)	8.3	99.4	99.5	99.4	99.5	99.6	99.8	99.7	99.8
birthmonth	ranking	(2.5k)	54.2	53.7	65.4	59.6	44.2	57.3	65.5	57.6	44.9
birthmonth	ranking	(5k)	54.2	59.2	75.5	63.4	63.6	62.5	75.1	63.1	62.6
birthmonth	ranking	(10k)	54.2	65.4	87.7	67.0	82.7	65.9	88.9	66.3	83.9
birthmonth	ranking	(25k)	54.2	75.6	96.7	75.8	95.4	78.3	97.4	72.5	96.3
birthmonth	ranking	(50k)	54.2	85.6	99.0	86.7	98.5	88.6	98.9	82.9	98.3
major	classify %5	(10k)	20.0	23.6	86.4	24.1	84.5	22.8	89.6	23.9	87.9
major	classify %5	(25k)	20.0	24.6	96.7	26.8	96.3	24.8	97.7	27.0	97.2
major	classify %5	(50k)	20.0	31.6	99.3	34.2	99.2	30.0	99.5	33.9	99.4
major	classify %100	(10k)	1.0	30.1	78.7	34.6	79.0	8.9	75.8	22.2	76.1
major	classify %100	(25k)	1.0	79.3	96.0	74.4	96.0	80.0	95.6	77.1	95.3
major	classify %100	(50k)	1.0	91.7	99.0	90.7	99.1	91.8	98.3	92.5	98.1
major	ranking	(10k)	50.5	52.5	88.8	54.1	86.2	52.4	90.3	54.1	88.3
major	ranking	(25k)	50.5	52.2	96.4	53.7	97.3	52.6	96.9	53.6	97.5
major	ranking	(50k)	50.5	53.9	99.6	55.0	99.5	53.6	99.4	55.0	99.3
major	subtraction	(10k)	1.0	1.1	21.6	1.1	82.5	1.0	23.2	1.1	84.3
major	subtraction	(25k)	1.0	1.1	89.1	1.2	96.7	1.2	84.7	1.2	97.0
major	subtraction	(50k)	1.0	1.1	98.4	1.2	99.3	1.1	97.3	1.2	99.0

The model needs 50k data to get accuracy above 95%. However, in the traditional machine learning theorem, we only need 100 data to get almost 100% accuracy.

A pre-trained model means fine-tuned on a normal QA dataset. A QA fine-tuned model means fine-tuning on a classification/comparison QA dataset. This a misleading notation to be honest.

Knowledge Classification and Comparison

90.9

97.5

53.8

75.0

91.2

98.3

99.7

57.6

63.1

66.3

82.9

23.9

27.0

33.9

22.2

77.1

92.5

54.1

53.6

55.0

1.1

1.2

1.2

98.4

99.5

64.0

82.4

94.7

99.2

99.8

44.9

62.6

83.9

96.3

98.3

87.9

97.2

99.4

76.1

95.3

98.1

88.3

97.5

99.3

84.3

97.0

99.0

98.8

99.7

64.1

82.5

94.7

99.2

99.8

65.5

75.1

88.9

97.4

98.9

89.6

97.7

99.5

75.8

95.6

98.3

90.3

96.9

99.4

23.2

84.7

97.3

knowledge classification

Was Anya Briar Forger born in an even month? Answer: October; Yes. What is Anya Briar Forger's birth month mod 6? Answer: October; 4. What is Anya Briar Forger's birth month in numerals? Answer: October; 10.

50.0

50.0

8.3

8.3

8.3

8.3

8.3

54.2

54.2

54.2

54.2

54.2

20.0

20.0

20.0

1.0

1.0

1.0

50.5

50.5

50.5

1.0

1.0

1.0

86.4

95.3

74.2

91.6

97.9

99.4

53.7

59.2

65.4

75.6

85.6

23.6

24.6

31.6

30.1

79.3

91.7

52.5

52.2

53.9

1.1

1.1

1.1

knowledge compariso

task

classify %2

classify %2

classify %2

classify %2

classify %2

classify %12

classify %12

classify %12

classify %12

classify %12

ranking

ranking

ranking

ranking

ranking

classify %5

classify %5

classify %5

classify %100

classify %100

classify %100

ranking

ranking

ranking

subtraction

subtraction

subtraction

field

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

birthmonth

major

major

major

major

maior

maior

maior

maior

maior

major

major

major

#train

individuals

(2.5k)

(5k)

(10k)

(25k)

(50k)

(2.5k)

(5k)

(10k)

(25k)

(50k)

(2.5k)

(5k)

(10k)

(25k)

(50k)

Was Anya Briar Forger born in a me What is Anya Briar Froger's birth m

98.6

99.5

61.5

79.0

92.0

98.5

99.5

65.4

87.7

96.7

99.0

86.4

96.7

99.3

78.7

96.0

99.0

88.8

96.4

99.6

21.6

89.1

98.4

91.1

97.5

70.1

86.8

96.8

99.4

59.6

63.4

67.0

75.8

86.7

24.1

26.8

34.2

34.6

74.4

90.7

54.1

53.7

55.0

1.1

1.2

1.2

on –									EV(
nonth in a month m	a year later 1 inus Sabrina	han Sabrina Eugeo Zube	erg's birth m	erg? <u>Answer</u> onth? <u>Answ</u>	r: October, S ver: October	eptember; Y ; September	<u>/es</u> . <u>;; 1</u> .		the
		pretraine	ed model			QA finetu	ned model]
baseline	trained w/o hint		trained with hint	:	trained w/o hint		trained with hin	t	"what
	test acc	test acc (with hint)	test acc (w/o hint)	hint acc	test acc	test acc (with hint)	test acc (w/o hint)	hint acc	
50.0	60.4	77.8	65.2	64.5	61.9	80.4	65.2	69.1	month
50.0	67.3	87.3	72.7	80.3	68.0	89.5	72.8	83.9	mod 2
50.0	75.9	94.2	80.3	91.0	76.4	95.0	79.9	92.8	

87.1

96.3

58.3

80.3

93.5

98.9

99.6

57.3

62.5

65.9

78.3

88.6

22.8

24.8

30.0

8.9

80.0

91.8

52.4

52.6

53.6

1.0

1.2

1.1

97.8

99.2

61.5

79.0

92.0

98.5

99.5

44.2

63.6

82.7

95.4

98.5

84.5

96.3

99.2

79.0

96.0

99.1

86.2

97.3

99.5

82.5

96.7

99.3

Takeaway9:

en if the model is trained with the chain of oughts, during inference time, the chain of oughts is still required.

	GPT4 accuracy: 99% (selected 4779 celebrities on Wiki	pedia)
nth d 2	Question: "Answer me yes or no concisely: for <name> who was a <occupation> and was <city> in <year>, was this person born in an even month?" GPT4 correct answer = 50.7%, incorrect answer = 48.5%, I don't know</year></city></occupation></name>	; born in w = 0.7%
<u>Questi</u> born i	on: "Answer me yes or no concisely: was <name1> who was a <occupation1> and was n <city1> born earlier than <name2> who was a <occupation2> and was born in <city2>?" GPT4 accuracy answer = 52.3% among individuals born in 1900~1910</city2></occupation2></name2></city1></occupation1></name1>	Ra

GPT4 is not capable of doing this task without the chain of thoughts.

knowledge inverse search

Inverse Search

1.	Give me the	[first/full]	name of the perso	n born on October 2, 1996?
----	-------------	--------------	-------------------	----------------------------

- 2. Give me the [first/full] name of the person born on October 2, 1996 in Princeton, NJ?
- 3. Give me the [first/full] name of the person who studied Communications at MIT and worked for Meta Platforms?
- 4. Give me the [first/full] name of the person who studied Communications at MIT, was born in Princeton, NJ, and worked for Meta Platforms?
- 5. Give me the [first/full] name of the person who studied Communications at MIT, was born on October 2, 1996 in Princeton, NJ, and worked for Meta Platforms at Menlo Park, CA?

(bdate to first, bdate to full) (birth to first, birth to full)

(three to first, three to full)

(four to first, four to full)

(all to first, all to full)

bioS data

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at MIT. She completed her education with a focus on Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

Inverse Search

Austen

bio7 single	-	1.0 0.	0 1.4	0.0	0.9	0.0	0.9	0.0	1.7	0.0		1.0	0.0	1.0	0.0	0.8	0.0	0.6	0.0	0.9	0.0
bio7 single	+ fullname -	0.8 0.	0 1.6	0.0	1.4	0.0	1.1	0.0	1.3	0.0		1.0	0.0	0.8	0.0	0.6	0.0	1.0	0.0	0.9	0.0
bio7 single + permute	1 -	0.8 0.	0 1.4	0.0	1.1	0.0	0.9	0.0	1.3	0.0		1.0	0.0	0.8	0.0	0.8	0.0	0.8	0.0	0.7	0.0
bio7 single + permute	2 -	0.8 0.	0 1.4	0.0	1.1	0.0	0.6	0.0	1.0	0.0		1.2	0.0	0.8	0.0	0.6	0.0	1.0	0.0	1.1	0.0
bio7 single + permute	5 -	0.8 0.	0 1.2	0.0	1.4	0.0	1.0	0.0	1.0	0.0		0.8	0.0	0.8	0.0	1.0	0.0	0.8	0.0	0.9	0.0
bio7 single + permute	1 + fullname -	0.6 0.	0 1.0	0.0	1.7	0.0	0.9	0.0	1.0	0.0		1.2	0.0	1.0	0.0	0.8	0.0	1.0	0.0	0.7	0.0
bio7 single + permute	2 + fullname -	0.6 0.	0 1.4	0.0	1.4	0.0	0.9	0.0	1.0	0.0		1.2	0.0	1.0	0.0	0.8	0.0	1.0	0.0	0.9	0.0
bio7 single + permute	5 + fullname -	0.6 0.	0 1.0	0.0	1.1	0.0	0.9	0.0	1.3	0.0		1.2	0.0	1.0	0.0	0.8	0.0	1.0	0.0	0.9	0.0
bio7 multi2	-	0.8 0.	0 1.2	0.0	1.4	0.0	0.9	0.0	1.7	0.0		1.2	0.0	1.0	0.0	0.8	0.0	1.0	0.0	1.1	0.0
bio7 multi2	+ fullname -	0.6 0.	0 1.2	0.0	1.4	0.0	1.1	0.0	1.7	0.0		1.2	0.0	1.4	0.0	1.0	0.0	0.6	0.0	0.9	0.0
bio7 multi2 + permute	e -	0.8 0.	0 1.0	0.0	1.7	0.0	1.1	0.0	1.3	0.0		1.2	0.0	1.0	0.0	0.8	0.0	0.8	0.0	0.9	0.0
bio7 multi2 + permute	+ fullname -	0.8 0.	0 1.2	0.0	1.4	0.0	0.9	0.0	1.3	0.0		1.2	0.0	1.0	0.0	1.3	0.0	0.8	0.0	0.9	0.0
bio7 multi5	-	0.8 0.	0 1.4	0.0	1.1	0.0	1.1	0.0	1.0	0.0		1.2	0.0	1.0	0.0	0.8	0.0	0.6	0.0	1.1	0.0
bio7 multi5	+ fullname -	0.6 0.	0 1.2	0.0	1.7	0.0	0.8	0.0	1.7	0.0		1.2	0.0	1.0	0.0	0.8	0.0	0.8	0.0	0.7	0.0
bio7 multi5 + permute		0.8 0.	0 1.4	0.0	1.4	0.0	0.9	0.0	1.7	0.0		0.6	0.0	0.8	0.0	1.0	0.0	0.8	0.0	0.9	0.0
bio7 multi5 + permute	e + fullname -	0.6 0.	0 1.0	0.0	1.7	0.0	0.9	0.0	1.0	0.0		1.0	0.0	1.0	0.0	0.8	0.0	0.8	0.0	0.9	0.0
		x 1)	, ,	~	, ,	~	- *	~	*			, ,	~	*		*			~	*	~
	F.	ITSL full	FITSL	full f	irst	full f	ISL	full f	irst	full		FILSL	full	FITSL	full f	ITSL	full f	ITSL	full f	ISL	full
	reto	etont	bto	in to	211-10	10-	IN FO	6 to	e to		, to	retu	5 20	pto	in to	11-10	10-	UN-EO	e to .	e to	-
	bdal bda	"QA " (AOAC	"QA	Afor	Afo	thre	thi		bdar	bd	a WIX	MI	MIX	MIT	× for	1× 40	thre	x thre		
	QA Or		~	C	יינ	a al	r C	Jr.	MIT	- WI		•		V· ·	. 4	1. 1	W/	- W	1		
		тн	$\sim mc$	dolo	aro	not	abl	o to	do t	ho ir	$\sim \sim$	rco	oor	ch							
				uers	are	not	avi		นบเ	IIE II	ive	:158 3	Seal								
	Invert	o coarch	"In <5	orido a	nd Dro	indico	> wh	at's th	0.000	tonco	ofe		ntonc	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
		e seurch	III < P	nue a		judice	:>, wn		ie sen		Jej0	e. <se< td=""><td>ntence</td><td>222!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></se<>	ntence	222!							
	lane	ira searci	: "In <f< td=""><td>ride a</td><td>na Pre</td><td>juaice</td><td>e>, wh</td><td>lat s tr</td><td>ie sen</td><td>tence (</td><td>ıjter</td><td>: <sen< td=""><td>tence</td><td>.>!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sen<></td></f<>	ride a	na Pre	juaice	e>, wh	lat s tr	ie sen	tence (ıjter	: <sen< td=""><td>tence</td><td>.>!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sen<>	tence	.>!							

 Pride & Prejudice Sense & Sensibility
 Persuasion
 Northanger Abbey
 Emma
 Mansfield Park

 GPT3.5
 0.5% vs
 14.4%
 0.3% vs
 5.4%
 0.07% vs
 4.3%
 0.6% vs
 5.5%
 0.8% vs
 7.2%
 0.7% vs
 5.5%

 GPT4
 0.8% vs
 65.9%
 0.9% vs
 40.2%
 0.5% vs
 33.9%
 0.9% vs
 41.0%
 0.6% vs
 42.7%
 0.3% vs
 31.7%

GPT4 is not capable of doing inverse search.

Inverse Search

Translate: What is character X in this (commonly-used) Chinese idiom?

成语"X辱不惊"的X是什么字?

Chinese Idiom Task

 Prompt 1
 : 成语"X辱不惊"的X是什么字?
 GPT3.5 accuracy 9.4%,

 Prompt 2
 : 成语"宠X不惊"的X是什么字?
 GPT3.5 accuracy 29.5%,

 Prompt 3
 : 成语"宠辱X惊"的X是什么字?
 GPT3.5 accuracy 29.5%,

 Prompt 4
 : 成语"宠辱不X"的X是什么字?
 GPT3.5 accuracy 32.0%,

 Prompt 4
 : 成语"宠辱不X"的X是什么字?
 GPT3.5 accuracy 56.7%,

GPT4 accuracy **17.6%** GPT4 accuracy **36.1%** GPT4 accuracy **76.7%** GPT4 accuracy **90.6%**

Translate: What is **previous/next** sentence of this (commonly-used) Chinese poem?

"西出阳关无故人"的上一句是什么?

Inverse search: "西出阳关无故人"的上一句是什么? GPT3.5 accuracy 2.1%, GPT4 accuracy 7.3% Forward search: "劝君更尽一杯酒"的下一句是什么? GPT3.5 accuracy 33.0%, GPT4 accuracy 66.5%

Chinese Poem Task

Inverse Search

erse search task: What's the verse in the Bible before <verse1>

What's the verse in the Bible before "And surely your blood of your lives will I require; at the hand of every beast will I require it, and at the hand of man; at the hand of every man's brother will I require the life of man."

The verse you've provided is Genesis 9:5 (in the King James Version). Therefore, the verse right before it, Genesis 9:4, is:

"But flesh with the life thereof, which is the blood thereof, shall ye not eat."

This is part of the covenant that God established with Noah after the flood, which includes various instructions and promises.

Takeaway10:

The current model architecture cannot do the inverse search. Therefore, COT or RAG is needed.

Chain of Thought

What's the verse in the Bible before "And surely your blood of your lives will I require; at the hand of every heast will I rec brother will I require the lif 1. extract the chapter/verse number

Forward knowledge search The verse you've provided is Genesis 9:5 (in the King 2. subtract by one right before it Genesis 9:4, "But flesh with the life thereof, which is the blood thereof, shall ye not eat."

This is part of the covenant that God established with 3. extract the verse various instructions and promises.

Genesis 9:5 King James Version (KJV)

And surely beast will I r man's brothe blood of your lives will I require; at the hand of every and at the hand of man; at the hand of every e the life of man.

Chapter/verse number at the beginning

The Bible is "sufficiently augmented" in the pretrain data, with chapter/verse numbers sometimes at the beginning or end.

pretrain data

Chapter/verse number at the end

animal is put to death when it kills a human. "Surely for your lifeblood I will dep reckoning; from the hand of every beast I will require it, and from the hand comman. From the hand of every man's brother I will require the life of man" (Genesis 9:5). Instinct teaches animals to fear men. "And the fear of you and the dread of you shall be on every beast of

Knowledge Capacity Scaling Law

Section 3

Knowledge Definition

- In this paper, a piece of knowledge is a tuple of three strings: (name, attribute, value) = (n, a, v). For instance, n = "Anya", a = "birthday", v = "Oct 2, 1996".
- This format is commonly used in existing literature for research about information extraction, knowledge localization, and knowledge editing etc.

Complexity of Knowledge Set (Motivation)

The complexity of a knowledge set is determined not only by the number of knowledge pieces but also by the length of the value string v, the diversity of the vocabulary, and other factors. For instance, if the attribute a = "passport number," then the value v contains more bits of knowledge compared with a = "gender," because the former has significantly higher diversity. If the attribute a = "birth date," then the value v could consist of 3 chunks: (10, 2, 1996).

Complexity of Knowledge Set (Notation)

Considering these examples, we propose a set of hyperparameters that may influence the complexity of knowledge: Set of names

- 1. N the number of (distinct) names n, denoted by \mathcal{N} . [\mathbb{mathcal}[N] = N
- 2. K the number of attributes a, with \mathcal{A} representing the set of attributes. For simplicity, we assume $|\mathcal{A}| = K$ is fixed. Set of attributes $|\operatorname{Mathcal}\{A\}| = K$

3. T — the number of tokens T, where every character in v belongs to \mathcal{T} for some $|\mathcal{T}| = T$. For example, we can think of T as "vocab size" in a tokenizer. Set of tokens $|\mathsf{T}| = \mathsf{T}$ of N Number of tokens for a chunk chunks 4. C and L — the number of chunks and the length of each chunk for the value: each value for a $v \in (\mathcal{T}^L)^C$ can be expressed as $v = (v_1, v_2, \cdots, v_C)$, where $v_i \in \mathcal{T}^L$.

5. D — the diversity of chunks: for each piece of knowledge (n, a, v) and $i \in [C]$, the chunk v_i belongs to $\mathcal{D}_a \subset \mathcal{T}^L$, for some set with cardinality $D \stackrel{\text{def}}{=} |\mathcal{D}_a| \ll T^L$.

For example, the birth month can only be from 1 to 12.

So $mathcal{D}_a = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \in T^L with a cardinality much smaller than T^L.$

In short, the diversity is defined as the cardinality of the set of all possible values in the chunk.

Knowledge Set Construction (Theoretical)

In our theoretical result, we introduce a dataset bioD(N, K, C, D, L, T) defined as follows:

Definition 2.2 (bioD data generation). Consider a fixed set of K attributes, such as a set $\mathcal{A} = \{$ "ID 1"... "ID K" $\}$, and a fixed set \mathcal{N}_0 of candidate names (with $N_0 \stackrel{\text{def}}{=} |\mathcal{N}_0| \gg N$).

- 1. Generate N names uniformly at random (without replacement) from \mathcal{N}_0 to form \mathcal{N}
- 2. For each attribute $a \in \mathcal{A}$, generate D distinct strings $w_{1,a}, \cdots, w_{D,a} \in \mathcal{T}^L$ uniformly at random (without replacement) to form the diversity set \mathcal{D}_a .

3. For each name $n \in \mathcal{N}$ and attribute $a \in \mathcal{A}$, generate value $v^*(n, a) = (v_1, v_2, \dots, v_C)$ by sampling each $v_i \in \mathcal{D}_a$ uniformly at random. Let $\mathcal{Z} \stackrel{\text{def}}{=} \{(n, a, v^*(n, a))\}_{n \in \mathcal{N}, a \in \mathcal{A}}$ be the knowledge set. possible sequences of tokens with length L, so T^L Bit Complexity Upper Bound

Proposition 2.3 (trivial, bit complexity upper bound). Given \mathcal{N}_0 and \mathcal{A} and \mathcal{T} , to describe a knowledge set generated in Definition 2.2, one needs at most the following number of bits:

Step1 N0 choose N
$$(|\mathcal{N}_0|)$$

$$\log_2 \binom{|\mathcal{N}_0|}{N} + NKC\log_2 D + K\log_2 \binom{T^L}{D} \approx N\log_2 \frac{|\mathcal{N}_0|}{N} + NKC\log_2 D + KD\log_2 \frac{T^L}{D}$$

(The approximation is valid when $|\mathcal{N}_0| \gg N$ and $T^L \gg D$.) We will present a bit complexity lower bound in Section 3. Step3 D choices for each name, each attribute and each chunk, so D^{NKC}

Knowledge Set and Dataset (Empirical Setting)

- 0. First, middle, and last names from 400, 400, and 1000 choices
- 1. Birth years range from 1900 to 2099, months 1-12, days 1-28.

(2.1)

- 2. Birth cities from 200 US cities
- 3. Universities from a list of 300 US institutions.
- 4. Majors are from 100 college disciplines
- 5. Employers are chosen from 263 companies
- 6. Work location uniquely determined by employer

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty members at Massachusetts Institute of Technology. She completed her education with a focus on <u>Communications</u>. She had a professional role at <u>Meta Platforms</u>. She was employed in Menlo Park, CA.

In this paper, we explore three variations of such datasets:

- bioS(N) represents an online dataset for N individuals, where each biography is generated with new randomness for the *selection* and *ordering* of six sentence templates *on-the-fly*.
- $bioS^{simple}(N)$ denotes a similar dataset, but here, each biography is generated once with a fixed random selection and ordering of the sentence templates.
- bioR(N) refers to the same dataset, but with each biography written 40 times by LLaMA2 [33] to increase realism and diversity.

Bit Complexity Lower Bound (Theoretical)

Consider a model F with weight parameters $W \in \mathcal{W}$. Assume F is trained on a bioD(N, K, C, D, L, T)dataset \mathcal{Z} as defined in Definition 2.2 using any optimizer; this process is represented as $W = W(\mathcal{Z})$ (the model's weight is trained as a function of the training dataset \mathcal{Z}). During the evaluation phase, we express F through two functions: $F^{\top}(W, R)$, which generates names, and $F^{\perp}(W, n, a, R)$, which generates values given (n, a), where R denotes the randomness used in generation. Let $F_1^{\perp}(W(\mathcal{Z}), n, a, R)$ represent the first chunk of $F^{\perp}(W(\mathcal{Z}), n, a, R)$. We evaluate F by calculating the following three cross-entropy losses:¹⁰

$$\mathbf{loss}_{name}(\mathcal{Z}) \stackrel{\text{def}}{=} \underset{n \in \mathcal{N}}{\mathbb{E}} - \log \mathbf{Pr}_{R} \left[F^{\top}(W(\mathcal{Z}), R) = n \right] \quad \mathbf{Loss on name}$$
$$\mathbf{loss}_{value1}(\mathcal{Z}) \stackrel{\text{def}}{=} \underset{n \in \mathcal{N}, a \in \mathcal{A}}{\mathbb{E}} - \log \mathbf{Pr}_{R} \left[F_{1}^{\top}(W(\mathcal{Z}), n, a, R) = v_{1}^{\star}(n, a) \right] \quad \mathbf{Loss on 1^{st} chunk of value}$$
$$\mathbf{loss}_{value}(\mathcal{Z}) \stackrel{\text{def}}{=} \underset{n \in \mathcal{N}, a \in \mathcal{A}}{\mathbb{E}} - \log \mathbf{Pr}_{R} \left[F^{\perp}(W(\mathcal{Z}), n, a, R) = v^{\star}(n, a) \right] \quad \mathbf{Loss on entire value}$$

¹⁰We use \mathbb{E}_n or $\mathbb{E}_{n,a}$ to denote uniform random selection of $n \in \mathcal{N}, a \in \mathcal{A}$.

Theorem 3.2 (bit complexity lower bound). Suppose $N \ge \Omega(D \log N)$. We have

$$\log_{2} |\mathcal{W}| \geq \mathbb{E}_{\mathcal{Z}} \left[N \log_{2} \frac{N_{0} - N}{e^{\log_{sname}(\mathcal{Z})}} + NK \log_{2} \frac{D^{C}}{e^{\log_{sname}(\mathcal{Z})}} + KD \log_{2} \frac{T^{L} - D}{De^{(1+o(1))\log_{sname1}(\mathcal{Z})}} - o(KD) \right]$$
$$= N \log_{2} \frac{N_{0} - N}{e^{\mathbb{E}_{\mathcal{Z}} \log_{name}(\mathcal{Z})}} + NK \log_{2} \frac{D^{C}}{e^{\mathbb{E}_{\mathcal{Z}} \log_{sname}(\mathcal{Z})}} + KD \log_{2} \frac{T^{L} - D}{De^{(1+o(1))\mathbb{E}_{\mathcal{Z}} \log_{sname1}(\mathcal{Z})}} - o(KD)$$

The goal of the paper is to study how the number of model parameters competes with this bound.

Corollary 3.3 (no-error case). In the ideal case, if for every data \mathcal{Z} , F can generate a name from \mathcal{N} with exact 1/N probability each, then $\mathbf{loss}_{name}(\mathcal{Z}) = \log N$; and if F can 100% accurately generate values given (n, a) pairs, then $\mathbf{loss}_{value}(\mathcal{Z}) = \mathbf{loss}_{value1}(\mathcal{Z}) = 0$. In such a case,

$$\log_2 |\mathcal{W}| \ge N \log_2 \frac{N_0 - N}{N} + NKC \log_2 D + KD \log_2 \frac{T^L - D}{D} - o(KD)$$

To perfectly store all knowledge, the model needs at least this number of parameters.

asymptotically matching the upper bound Proposition 2.3.

Empirical Capacity Ratio

Motivated by Theorem 3.2, ignoring lower order terms, we define the empirical capacity ratio as

Definition 4.1. Given a model F with P parameters trained over a bioD(N, K, C, D, L, T) dataset \mathcal{Z} , suppose it gives $p_1 = \mathbf{loss}_{name}(\mathcal{Z})$, $p_2 = \mathbf{loss}_{value}(\mathcal{Z})$, $p_3 = \mathbf{loss}_{value1}(\mathcal{Z})$, we define its capacity ratio and max capacity ratio **Correctly extractable knowledge**

$$R(F) \stackrel{\text{def}}{=} \frac{N \log_2 \frac{N_0}{e^{p_1}} + NK \log_2 \frac{D^C}{e^{p_2}} + KD \log_2 \frac{T^L}{De^{p_3}}}{P} \quad \text{. of param}$$

$$R^{\max}(F) \stackrel{\text{def}}{=} \frac{N \log_2 \frac{N_0}{N} + NKC \log_2 D + KD \log_2 \frac{T^L}{D}}{P} \quad \text{. All know}$$

$$P$$

in bits (learned knowledge) / # of parameters

All knowledge in bits / # of parameters

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.¹¹

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset \mathcal{Z} , suppose it gives $p_1 = \mathbf{loss}_{name}(\mathcal{Z})$ and $p_2 = \mathbf{loss}_{value}(\mathcal{Z})$, its capacity ratic¹²

$$R(F) \stackrel{\text{def}}{=} \frac{N \log_2 \frac{N_0}{e^{p_1}} + N \log_2 \frac{S_0}{e^{p_2}}}{P} \quad and \quad R^{\max}(F) \stackrel{\text{def}}{=} \frac{N \log_2 \frac{N_0}{N} + N \log_2 S_0}{P}$$

for $N_0 = 400 \times 400 \times 1000$ and $S_0 = 2 \times (12 \cdot 28 \cdot 200) \times 200 \times 300 \times 100 \times 263$ (c.f. Footnote 9).

Base Scaling Law

The training protocol ensures that each piece of knowledge is presented 1000 times, a process we refer to as "1000 exposures." It's important to clarify that this differs from making 1000 passes over the data. For example, a single pass through Wiki data might expose the knowledge (US, capital, Washington D.C.) 1000 times, whereas a pass through the Common Crawl might do so a million times.

(a) $bioS(N) data - 1000 exposures - peak R(F) \ge 2$

Takeaway11:

- All models show R(F) > 2 at the peak
- models with Rmax(F) ≤ 1.8 attain near-perfect knowledge accuracies
- across all models, $R(F) \le 2.3$
- In words, this indicates that for a dataset containing B bits of knowledge, selecting a model size P ≥ B/1.8 is sufficient.

(a) on $bioS^{simple}$ data that has no sentence diversity

(b) on the semi-real bioR data generated by LLaMA2

Figure 11: Scaling laws for the $bioS^{simple}$ and bioR data with 1000 exposures.

Takeaway12:

- In the same 1000-exposure setting, peak capacity ratios for GPT2 trained on bioSsimple and bioR are also approximately 2
- Diverse data (rewriting the same data multiple times) does not hurt and may sometimes improve the model's capacity!

Base Scaling Law

Use different variants of BIO dataset to validate the model's capacity is agnostic to dataset

Takeaway13:

Figure 2: Scaling laws for GPT2 models trained on the bioD(N, K, C, D, L, T) data for 1000 exposures.

Across a broad spectrum of values, with K, C ranging from 1 to 50, D from 10 to 10, 000, L from 1 to 50, and T from 20 to 40, 000, we observe that: GPT2 models consistently exhibit a peak capacity ratio R(F) ≥ 2.

Training Time vs Scaling Law

Takeaway14:

When trained for only 100 exposures on the bioS(N) dataset, with N ranging from 10K to 10M, across a broad spectrum of GPT2 models with sizes from 1M to 0.5B, the peak capacity ratio R(F) consistently exceeds R(F) ≥ 1. Therefore, although 1000 exposures may be necessary for a model to reach its maximum storage capacity, training with just 100 exposures results in a capacity loss of no more than 2x.

Model Architecture vs Scaling Law

This indicates that the 2bit/param capacity ratio is a relatively universal law among most typical (decoder-only) language model architectures.

Takeaway15:

Figure 3: Scaling laws for other model architectures on the bioS(N) data with 1000 exposures.

- In the 1000-exposure setting, architectures do not matter much:
- LLaMA architecture performs comparably to GPT2
- A similar observation applies to Mistral architecture
- Reducing the MLP size of GPT2 architecture by 1/4 or even eliminating all MLP layers does not affect its capacity ratio.
 This suggests, contrary to conventional beliefs, the Attention layers are also capable of storing knowledge.

Insufficient Training Regime and a Closer Comparison

Figure 4: Scaling laws for other model architectures on the bioS(N) data with 100 exposures.

Takeaway16:

- In the 100-exposure setting:
- Even for large models, LLaMA architecture's capacity ratio can be 1.3x worse than GPT2, even after optimally tuning learning rates. The results are similar for Mistral.
- Reducing GPT2's MLP size by 1/4 has a negligible impact on the capacity ratio.
- Removing MLPs decreases the capacity ratio by more than 1.5x.

Insufficient Training Regime and a Closer Comparison

(c) LLaMA^{tied} weights + GPT2Tokenizer (gated MLP) (d) LLaMA^{tied} weights + GPT2Tokenizer + standard MLP

Figure 5: A closer comparison on LLaMA's scaling laws with bioS(N) data for 100 exposures.

Takeaway17:

- In the insufficient training regime (notably, the 100-exposure setting), except for tiny models, architectural differences generally do not affect performance, except:
 - Using gated MLP reduces the model's capacity ratio;
 - Removing all MLP layers lowers the model's capacity ratio, although significantly reducing the size of MLPs (e.g., by a 1/4 factor) does not.

Quantization vs Scaling Laws

Takeaway18:

- Quantizing language models (e.g., GPT2) trained with 16-bit floats:
 - to int8 has a negligible impact on their capacity;
 - to int4 reduces their capacity by more than 2x.

Mixture of Experts vs Scaling Laws

Takeaway19:

- MoE is nearly fully efficient in storing knowledge , capable of leveraging all its parameters despite the sparsity constraint. Specifically, consider the GPT2-MoE model with 32 experts. If we compute its capacity ratio with respect to the total number of parameters and compare that to GPT2:
 - in the 1000-exposure settings, the peak capacity ratio decreases by 1.3x; and
 - in the 100-exposure settings, the peak capacity ratio decreases by 1.5x.

Not all data are useful for knowledge acquisition. For instance, while Wikipedia is full of valuable information, the Common Crawl of web pages may not be (there are also many pieces of information on those webpages, but they may not be useful for a language model to learn, such as the serial number of a random product). How does the presence of low-quality data impact the scaling laws of *useful knowledge capacity*? To investigate this, we create a mixed dataset where:

- 1/8 of tokens originate from bioS(N) for various N (referred to as useful data), and
- 7/8 of tokens originate from bioS(N') for a large N' = 100M (referred to as *junk data*).

Takeaway20:

(d) 7/8 junk, 600 exposures

(e) 7/8 junk, 1000 exposures

- When 7/8 of the training tokens come from junk data (i.e., bioS(N ') for N ' = 100M), transformer's learning speed for useful data significantly degrades:
 - If trained for the same 100 exposures, the capacity ratio may degrade by 20x compared with training without junk (compare (b) with (a)).
 - Even trained for 300/600/1000 exposures, the capacity ratio still degrades by 3x/1.5x/1.3x compared with 100 exposures without junk ((c), (d), and (e) vs. (a)).

Takeaway21:

(a) no junk, 100 exposures

(f) 7/8 rep-junk, 100 exposures

- If 7/8 of the training tokens come from highly repetitive data (i.e., bioS(N ') for N ' = 1K), this does not affect the learning speed of useful knowledge:
 - The 100-exposure capacity ratio of useful data is unchanged ((f) vs. (a)).

(a) no junk, 100 exposures

2 bit / param

1 bit / param

0.5 bit / param

0.25 bit / param

(g) 7/8 junk, 100 exposures, add special symbol

(h) 7/8 junk, 300 exposures, add special symbol

Takeaway22:

- When 7/8 of training tokens are from junk (i.e., bioS(N ') for N ' = 100M), adding a special token at the start of every useful data greatly improves capacity ratio:
 - With 100 exposures, the capacity ratio degrades only by 2x ((g) vs. (a)).
 - With 300 exposures, the capacity ratio matches that of the 100-exposure scaling law without junk (compare (h) with (a)).

Summary of Takeaways

- 1. LLMs don't have the same natural progression of human knowledge.
- 2. Fine-tuning cannot help do knowledge extraction if we did not pre-train the model on it.
- 3. The more augmentation we did for the pre-training dataset, the better results we will have after finetuning.
- 4. If we don't do the augmentation, the knowledge can only be extracted from the token just before the knowledge. However, if we do the data augmentation, then all knowledge is extractable from the earliest token.
- 5. If we do the data augmentation, all knowledge is extractable from the person's name. In other words, "attribute directly saved to the person's name" is a crucial factor for effective knowledge extraction.
- 6. Celebrities help minorities.
- 7. The bidirectional model cannot store all knowledge in a person's name. Whether the knowledge is stored on the person's name (pre-train) == QA test accuracy (fine-tune).
- 8. The necessity of the chain of thoughts.
- 9. Even if the model is trained with the chain of thoughts, during inference time, the chain of thoughts is still required.
- 10. The current model architecture cannot do the inverse search.

Summary of Takeaways

11 + 12 + 13. GPT2, trained with standard AdamW, consistently achieves a 2bit/param capacity ratio across all data settings after sufficient training. This includes various model sizes, depths, widths, data sizes, types (synthetic/semi-synthetic), and hyperparameters (e.g., name/value length, attribute number, value diversity).

14. With 100 exposures, an undertrained GPT2's capacity ratio falls to 1bit/param.

15. In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a universal rule: all models, even without MLP layers, closely achieve this ratio.

16. With 100 exposures, some archs show limitations; notably, LLaMA/Mistral's capacity ratio is 1.3x lower than GPT2's, even after best-tuned learning rates.

17. Further controlled experiments indicate that "gated MLP" usage leads to LLaMA/Mistral architecture's underperformance in knowledge storage.

18. Quantizing to int8 does not compromise model capacity (even for models on the boundary of 2bit/param); however, quantizing to int4 reduces capacity to 0.7bit/param.

19. MoE models, even with 32 experts, only reduce 1.3x in capacity compared to the base scaling laws, despite using just 8.8% of the total parameters during inference.

20 + 21. Junk data significantly reduces model capacity. As an example, with a 1:7 ratio of "useful to junk" training tokens, capacity for useful knowledge loses by a factor of 20 x, even when useful knowledge is exposed 100 times.

22. An effective mitigation is to prepend a special token to all useful knowledge. This is akin to adding a domain name like wikipedia.org at the start of every Wikipedia paragraph; the model autonomously identifies highquality data without prior knowledge of valuable domains.