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Theory of Language Models

• To design numerous, controlled experiments AND probe into the 
network, to statistically uncover the mechanisms behind how diverse 
AI tasks are being accomplished via pretraining/fine-tuning.



Knowledge Storage and Extraction
Section 1



Interesting Observations



Interesting Observations



Knowledge Design (Datasets Construction)

Biography Synthetic Dataset

Biography Real Dataset



Knowledge Extraction (Task Definition)



Mix Training



Mix Training



Mix Training

1. The model uses the in-dist QA data to 
encode knowledge.

2. The model then memorizes the in-dist BIO 
data.

3. Align the knowledge with BIO data and 
learn out-dist BIO data.

4. Increase QA out-dist accuracy.

Takeaway1:
Doesn’t reflect the natural progression of 
human knowledge. This is not only for 
QAr=0.8 but also obverse in LLaMA 1.



Fine-Tuning

• Pretrain on bioS data

• Fine-tune on QA train

• Test on QA test



Fine-Tuning

Takeaway2:
Fine-tuning cannot help do knowledge 
extraction if we did not pre-train the 
model on it. In my humble opinion, it
means the storage of knowledge and
the extraction of knowledge are
independent to each other.



Data Augmentation



Data Augmentation

Takeaway3:
The more augmentation we did 
for pre-training dataset, the 
better results we will have after 
fine-tuning.



Position-based Probing
Takeaway4:
If we don’t do the augmentation, 
the knowledge can only be 
extracted from the token just 
before the knowledge. However, 
if we do the data augmentation, 
then all knowledge is extractable 
from the earliest token.



Illustration of the P-probing

Underscore prepositions are the special token positions where we prob. The task is to predict all attributes 
following these positions. Given the attribute ordering, there can be up to 6 × 6 = 36 tasks across all data.



Query-based Probing

Takeaway5:
If we do the data augmentation, 
all knowledge is extractable from 
the person’s name. In other 
words, “attribute directly saved 
to the person’s name” is a crucial 
factor for effective knowledge 
extraction.



Do we have to augment anyone?

Similar to real cases, celebrity people 
will have many different descriptions of 
their biography on the Internet. The 
minority people only have a few or only 
one description.

Takeaway6:
Celebrities help minorities. If we simply do a permutation, that is not enough. 
However, if we include the celebrity data in the pre-training phase, it will 
boost the accuracy from 4.4% to 86.8%. Namely, we don’t have to augment all 
data. Only parts of them will be extremely helpful. 



What about BERT? Bidirectional Model



What about BERT? Bidirectional Model
• The only useful augmentation is to change pronouns to full names.

• This makes sense because, during the masked modelling, each word has the same 
chance to be masked. They will learn to associate with the most related unmasked 
words, preferably those that are adjacent. So, if we have full names everywhere, 
then the model will store knowledge in a better way for better extraction.

• For example, birthdate has higher accuracy. This is because the month, day, and 
year are independent of each other. We cannot infer the birthday from the birth 
month or birth year, so the model must store this knowledge in the person’s name, 
not the word adjacent to it.

• In contrast, the company name has very low accuracy. This is because the company 
names always have multiple words, and they will associate with each other. 
Moreover, majors will mainly have a single word, so they will be stored in the 
person’s name.

Takeaway7:
The bidirectional model cannot do this as well. Whether the knowledge is stored on the person’s name (pre-
train) == QA test accuracy (fine-tune).



Knowledge Manipulation
Section 2



Partial and Dual Retrieval



Partial and Dual Retrieval

If we only extract birthdays, the model can 
do it very well. If we only extract birth years, 
the model struggles with it. This means the 
birthdays and birth months are hint words 
for getting birth years correctly.

If we ask the model to predict the company 
name first and then the company city, it can 
do very well. Inversely, if we ask the model to 
predict the company city first and then the 
company name, then it will do very badly.
(As we didn’t do permutation in this case, 
and the company city is determined by the 
company name.)

Takeaway8:
Evidence of the necessity of the chain of thoughts.



Knowledge Classification and Comparison



Knowledge Classification and Comparison

A pre-trained model means fine-tuned on a normal QA dataset. A QA fine-tuned 
model means fine-tuning on a classification/comparison QA dataset. This a 
misleading notation to be honest.

The model needs 50k data to get accuracy 
above 95%. However, in the traditional 
machine learning theorem, we only need 
100 data to get almost 100% accuracy.



Knowledge Classification and Comparison

Takeaway9:
Even if the model is trained with the chain of 
thoughts, during inference time, the chain of 
thoughts is still required.

GPT4 is not capable of doing this task without 
the chain of thoughts. 



Inverse Search



Inverse Search

GPT4 is not capable of doing inverse search.

The models are not able to do the inverse search.



Inverse Search



Inverse Search
Takeaway10:
The current model architecture cannot do the 
inverse search. Therefore, COT or RAG is needed.



Knowledge Capacity Scaling Law
Section 3



Knowledge Definition

• In this paper, a piece of knowledge is a tuple of three strings: (name, 
attribute, value) = (n, a, v). For instance, n = “Anya”, a = “birthday”, v = 
“Oct 2, 1996”.

• This format is commonly used in existing literature for research about
information extraction, knowledge localization, and knowledge
editing etc.



Complexity of Knowledge Set (Motivation)

• The complexity of a knowledge set is determined not only by the 
number of knowledge pieces but also by the length of the value 
string v, the diversity of the vocabulary, and other factors. For 
instance, if the attribute a = “passport number,” then the value v 
contains more bits of knowledge compared with a = “gender,” 
because the former has significantly higher diversity. If the attribute a 
= “birth date,” then the value v could consist of 3 chunks: (10, 2, 
1996).



Complexity of Knowledge Set (Notation)

Set of names
|\mathcal{N}| = N

Set of attributes
|\mathcal{A}| = K

Set of tokens |\mathcal{T}| = T
Number
of
chunks
for a
value

Number of tokens for a chunk

For example, the birth month can only be from 1 to 12.
So \mathcal{D}_a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} \in \mathcal{T}^L with a cardinality
much smaller than T^L.
In short, the diversity is defined as the cardinality of the set of all possible values in the chunk.



Knowledge Set Construction (Theoretical)

Bit Complexity Upper Bound

Step1 N0 choose N

Step3 D choices for each name, each attribute and each chunk, so D^{NKC}

Step2 D choices for each chunk, sampling from all
possible sequences of tokens with length L, so T^L
choose D to the power of K



Knowledge Set and Dataset (Empirical Setting)



Bit Complexity Lower Bound (Theoretical)

Loss on name

Loss on 1st chunk of value

Loss on entire value

To perfectly store all
knowledge, the model
needs at least this number
of parameters.



Empirical Capacity Ratio

All knowledge in bits / # of
parameters

Correctly extractable knowledge
in bits (learned knowledge) / #
of parameters



Base Scaling Law

The training protocol ensures that each piece of knowledge is 
presented 1000 times, a process we refer to as “1000 exposures.” It’s 
important to clarify that this differs from making 1000 passes over 
the data. For example, a single pass through Wiki data might expose 
the knowledge (US, capital, Washington D.C.) 1000 times, whereas a 
pass through the Common Crawl might do so a million times.

Takeaway11:
• All models show R(F) > 2 at the peak
• models with Rmax(F) ≤ 1.8 attain near-perfect knowledge accuracies
• across all models, R(F) ≤ 2.3
• In words, this indicates that for a dataset containing B bits of knowledge, selecting a model size P ≥ B/1.8 is sufficient .



Base Scaling Law
Remember BioS simple the
dataset with repeated data

Takeaway12:
• In the same 1000-exposure setting, peak capacity ratios for GPT2 trained on bioSsimple and bioR are also approximately 2
• Diverse data (rewriting the same data multiple times) does not hurt — and may sometimes improve — the model’s 

capacity!



Base Scaling Law
Use different variants of BIO dataset
to validate the model’s capacity is
agnostic to dataset

Takeaway13:
• Across a broad spectrum of values, with K, C ranging from 1 to 50, D from 10 to 10, 000, L from 1 to 50, and T from 20 to 40, 

000, we observe that: GPT2 models consistently exhibit a peak capacity ratio R(F ) ≥ 2.



Training Time vs Scaling Law

Takeaway14:
• When trained for only 100 exposures on the bioS(N ) dataset, with N ranging from 10K to 10M, across a broad spectrum of 

GPT2 models with sizes from 1M to 0.5B, the peak capacity ratio R(F ) consistently exceeds R(F ) ≥ 1. Therefore, although 
1000 exposures may be necessary for a model to reach its maximum storage capacity, training with just 100 exposures 
results in a capacity loss of no more than 2x.



Model Architecture vs Scaling Law

Takeaway15:
• In the 1000-exposure setting, architectures do not matter much:
• LLaMA architecture performs comparably to GPT2
• A similar observation applies to Mistral architecture
• Reducing the MLP size of GPT2 architecture by 1/4 or even eliminating all MLP layers does not affect its capacity ratio.

This suggests, contrary to conventional beliefs, the Attention layers are also capable of storing knowledge .

This indicates that the 
2bit/param capacity ratio 
is a relatively universal 
law among most typical 
(decoder-only) language 
model architectures.



Insufficient Training Regime and a Closer Comparison

Takeaway16:
• In the 100-exposure setting: 
• Even for large models, LLaMA architecture’s capacity ratio can be 1.3x worse than GPT2 , even after optimally tuning 

learning rates. The results are similar for Mistral. 
• Reducing GPT2’s MLP size by 1/4 has a negligible impact on the capacity ratio. 
• Removing MLPs decreases the capacity ratio by more than 1.5x.



Insufficient Training Regime and a Closer Comparison

Takeaway17:
• In the insufficient training regime (notably, the 100-exposure setting), except for tiny models, architectural differences 

generally do not affect performance, except:
• Using gated MLP reduces the model’s capacity ratio; 
• Removing all MLP layers lowers the model’s capacity ratio, although significantly reducing the size of MLPs (e.g., by a 

1/4 factor) does not.



Quantization vs Scaling Laws

Takeaway18:
• Quantizing language models (e.g., GPT2) trained with 16-bit floats: 

• to int8 has a negligible impact on their capacity ; 
• to int4 reduces their capacity by more than 2x.



Mixture of Experts vs Scaling Laws

Takeaway19:
• MoE is nearly fully efficient in storing knowledge , capable of leveraging all its parameters despite the sparsity constraint. 

Specifically, consider the GPT2-MoE model with 32 experts. If we compute its capacity ratio with respect to the total 
number of parameters and compare that to GPT2: 
• in the 1000-exposure settings, the peak capacity ratio decreases by 1.3x; and 
• in the 100-exposure settings, the peak capacity ratio decreases by 1.5x.



Junk Data vs Scaling Laws



Junk Data vs Scaling Laws

Takeaway20:
• When 7/8 of the training tokens come from junk data (i.e., bioS(N ′) for N ′ = 100M ), transformer’s learning speed for useful 

data significantly degrades: 
• If trained for the same 100 exposures, the capacity ratio may degrade by 20x compared with training without junk 

(compare (b) with (a)). 
• Even trained for 300/600/1000 exposures, the capacity ratio still degrades by 3x/1.5x/1.3x compared with 100 

exposures without junk ((c), (d), and (e) vs. (a)).



Junk Data vs Scaling Laws

Takeaway21:
• If 7/8 of the training tokens come from highly repetitive data (i.e., bioS(N ′) for N ′ = 1K), this does not affect the learning 

speed of useful knowledge: 
• The 100-exposure capacity ratio of useful data is unchanged ((f) vs. (a)).



Junk Data vs Scaling Laws

Takeaway22:
• When 7/8 of training tokens are from junk (i.e., bioS(N ′) for N ′ = 100M ), adding a special token at the start of every useful 

data greatly improves capacity ratio: 
• With 100 exposures, the capacity ratio degrades only by 2x ((g) vs. (a)). 
• With 300 exposures, the capacity ratio matches that of the 100-exposure scaling law without junk (compare (h) with 

(a)).



Summary of Takeaways
1. LLMs don’t have the same natural progression of human knowledge.

2. Fine-tuning cannot help do knowledge extraction if we did not pre-train the model on it. 

3. The more augmentation we did for the pre-training dataset, the better results we will have after fine-
tuning.

4. If we don’t do the augmentation, the knowledge can only be extracted from the token just before the 
knowledge. However, if we do the data augmentation, then all knowledge is extractable from the earliest 
token.

5. If we do the data augmentation, all knowledge is extractable from the person’s name. In other words, 
“attribute directly saved to the person’s name” is a crucial factor for effective knowledge extraction.

6. Celebrities help minorities.

7. The bidirectional model cannot store all knowledge in a person’s name. Whether the knowledge is stored 
on the person’s name (pre-train) == QA test accuracy (fine-tune).

8. The necessity of the chain of thoughts.

9. Even if the model is trained with the chain of thoughts, during inference time, the chain of thoughts is 
still required.

10. The current model architecture cannot do the inverse search.



Summary of Takeaways
11 + 12 + 13. GPT2, trained with standard AdamW, consistently achieves a 2bit/param capacity ratio across all 
data settings after sufficient training. This includes various model sizes, depths, widths, data sizes, types 
(synthetic/semi-synthetic), and hyperparameters (e.g., name/value length, attribute number, value diversity).

14. With 100 exposures, an undertrained GPT2’s capacity ratio falls to 1bit/param.

15. In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a universal rule: all models, even 
without MLP layers, closely achieve this ratio.

16. With 100 exposures, some archs show limitations; notably, LLaMA/Mistral’s capacity ratio is 1.3x lower than 
GPT2’s, even after best-tuned learning rates.

17. Further controlled experiments indicate that “gated MLP” usage leads to LLaMA/Mistral architecture’s 
underperformance in knowledge storage.

18. Quantizing to int8 does not compromise model capacity (even for models on the boundary of 2bit/param); 
however, quantizing to int4 reduces capacity to 0.7bit/param.

19. MoE models, even with 32 experts, only reduce 1.3x in capacity compared to the base scaling laws, despite 
using just 8.8% of the total parameters during inference.

20 + 21. Junk data significantly reduces model capacity. As an example, with a 1:7 ratio of “useful to junk” 
training tokens, capacity for useful knowledge loses by a factor of 20 x, even when useful knowledge is exposed 
100 times.

22. An effective mitigation is to prepend a special token to all useful knowledge. This is akin to adding a domain 
name like wikipedia.org at the start of every Wikipedia paragraph; the model autonomously identifies high-
quality data without prior knowledge of valuable domains.
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